Source code for astropy.units.core

# -*- coding: utf-8 -*-
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Core units classes and functions
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import re
import sys
import textwrap
import warnings

import numpy as np
from numpy import ma

from ..utils.compat.fractions import Fraction
from . import format as unit_format

# TODO: Support functional units, e.g. log(x), ln(x)

__all__ = [
    'UnitsException', 'UnitsWarning', 'UnitBase', 'NamedUnit',
    'IrreducibleUnit', 'Unit', 'def_unit', 'CompositeUnit',
    'PrefixUnit', 'UnrecognizedUnit']


[docs]class UnitsException(Exception): """ The base class for unit-specific exceptions. """ pass
[docs]class UnitsWarning(Warning): """ The base class for unit-specific exceptions. """ pass
[docs]class UnitBase(object): """ Abstract base class for units. Most of the arithmetic operations on units are defined in this base class. Should not be instantiated by users directly. """ _registry = [] _namespace = {} # Make sure that __rmul__ of units gets called over the __mul__ of Numpy # arrays to avoid element-wise multiplication. __array_priority__ = 1000 def __deepcopy__(self, memo): # This may look odd, but the units conversion will be very # broken after deep-copying if we don't guarantee that a given # physical unit corresponds to only one instance return self def _repr_latex_(self): """ Generate latex representation of unit name. This is used by the IPython notebook to print a unit with a nice layout. Returns ------- Latex string """ return unit_format.Latex().to_string(self) def __str__(self): """Return string representation for unit""" return unit_format.Generic().to_string(self) def __repr__(self): return 'Unit("' + str(self) + '")'
[docs] def to_string(self, format='generic'): """ Output the unit in the given format as a string. Parameters ---------- format : `astropy.format.Base` instance or str The name of a format or a formatter object. If not provided, defaults to the generic format. """ f = unit_format.get_format(format) return f.to_string(self)
@staticmethod def _get_namespace(): """ Get the namespace that units will be registered to. """ return UnitBase._namespace @staticmethod def _set_namespace(d): """ Set the namespace that units will be registered to. """ UnitBase._namespace = d def __pow__(self, p): if isinstance(p, tuple) and len(p) == 2: p = Fraction(p[0], p[1]) else: # allow two possible floating point fractions, all others illegal if not int(2 * p) == 2 * p: raise ValueError( "floating values for unit powers must be integers or " "integers + 0.5") return CompositeUnit(1, [self], [p]).simplify() def __div__(self, m): # Strictly speaking, we should be using old-style division here. # However, I think it's less surprising for this to behave the # same way whether __future__ division is being used or not if isinstance(m, UnitBase): return CompositeUnit(1, [self, m], [1, -1]).simplify() else: from .quantity import Quantity return Quantity(1. / m, self) def __rdiv__(self, m): from .quantity import Quantity return Quantity(m, CompositeUnit(1.0, [self], [-1]).simplify()) def __truediv__(self, m): return self.__div__(m) def __rtruediv__(self, m): return self.__rdiv__(m) def __mul__(self, m): if isinstance(m, UnitBase): return CompositeUnit(1, [self, m], [1, 1]).simplify() else: from .quantity import Quantity return Quantity(m, self) def __rmul__(self, m): from .quantity import Quantity return Quantity(m, self) if sys.version_info[0] >= 3: def __hash__(self): # Since this class defines __eq__, it will become unhashable # on Python 3.x, so we need to define our own hash. return id(self) def __eq__(self, other): other = Unit(other, parse_strict='silent') try: return np.allclose(self.to(other, 1), 1.0) except UnitsException: return False def __ne__(self, other): return not (self == other) def __lt__(self, other): other = Unit(other) return self.to(other, 1) < 1. def __gt__(self, other): other = Unit(other) return self.to(other, 1) > 1. def __le__(self, other): other = Unit(other) return self.to(other, 1) <= 1. def __ge__(self, other): other = Unit(other) return self.to(other, 1) >= 1. def __neg__(self): return self * -1.
[docs] def simplify(self): """ Compresses a possibly composite unit down to a single instance. """ return self
[docs] def is_dimensionless(self): """ Returns `True` if this unit translates into a scalar quantity without a unit. Examples -------- >>> ((2 * u.m) / (3 * u.m)).is_dimensionless() True >>> (2 * u.m).is_dimensionless() False """ return False
[docs] def is_equivalent(self, other, equivalencies=[]): """ Returns `True` if this unit is equivalent to `other`. Parameters ---------- other : unit object or string The unit to convert to. equivalencies : list of equivalence pairs, optional A list of equivalence pairs to try if the units are not directly convertible. See :ref:`unit_equivalencies`. Returns ------- bool """ other = Unit(other, parse_strict='silent') if isinstance(other, UnrecognizedUnit): return False try: (self / other).dimensionless_constant() except UnitsException: unit = self.decompose() other = other.decompose() for equiv in equivalencies: a = equiv[0] b = equiv[1] if (unit.is_equivalent(a) and other.is_equivalent(b)): return True elif (unit.is_equivalent(b) and other.is_equivalent(a)): return True return False else: return True
def _apply_equivalences(self, unit, other, equivalencies): """ Internal function (used from `get_converter`) to apply equivalence pairs. """ def make_converter(scale1, func, scale2): def convert(v): return func(_condition_arg(v) * scale1) * scale2 return convert orig_unit = unit orig_other = other unit = self.decompose() other = other.decompose() for equiv in equivalencies: if len(equiv) == 2: funit, tunit = equiv a, b = lambda x: x if len(equiv) == 3: funit, tunit, a = equiv b = a elif len(equiv) == 4: funit, tunit, a, b = equiv else: raise ValueError("Invalid equivalence entry") if (unit.is_equivalent(funit) and other.is_equivalent(tunit)): scale1 = (unit / funit).dimensionless_constant() scale2 = (tunit / other).dimensionless_constant() return make_converter(scale1, a, scale2) elif (other.is_equivalent(funit) and unit.is_equivalent(tunit)): scale1 = (unit / tunit).dimensionless_constant() scale2 = (funit / other).dimensionless_constant() return make_converter(scale1, b, scale2) def get_err_str(unit): unit_str = unit.to_string('unscaled') physical_type = unit.physical_type if physical_type != 'unknown': unit_str = "'{0}' ({1})".format( unit_str, physical_type) else: unit_str = "'{0}'".format(unit_str) return unit_str unit_str = get_err_str(orig_unit) other_str = get_err_str(orig_other) raise UnitsException( "{0} and {1} are not convertible".format( unit_str, other_str))
[docs] def get_converter(self, other, equivalencies=[]): """ Return the conversion function to convert values from `self` to the specified unit. Parameters ---------- other : unit object or string The unit to convert to. equivalencies : list of equivalence pairs, optional A list of equivalence pairs to try if the units are not directly convertible. See :ref:`unit_equivalencies`. Returns ------- func : callable A callable that normally expects a single argument that is a scalar value or an array of values (or anything that may be converted to an array). Raises ------ UnitsException If units are inconsistent """ other = Unit(other) try: scale = (self / other).dimensionless_constant() except UnitsException: return self._apply_equivalences( self, other, equivalencies) return lambda val: scale * _condition_arg(val)
[docs] def to(self, other, value=1.0, equivalencies=[]): """ Return the converted values in the specified unit. Parameters ---------- other : unit object or string The unit to convert to. value : scalar int or float, or sequence that can be converted to array, optional Value(s) in the current unit to be converted to the specified unit. If not provided, defaults to 1.0 equivalencies : list of equivalence pairs, optional A list of equivalence pairs to try if the units are not directly convertible. See :ref:`unit_equivalencies`. Returns ------- values : scalar or array Converted value(s). Input value sequences are returned as numpy arrays. Raises ------ UnitException If units are inconsistent """ other = Unit(other) return self.get_converter( other, equivalencies=equivalencies)(value)
[docs] def in_units(self, other, value=1.0, equivalencies=[]): """ Alias for `to` for backward compatibility with pynbody. """ return self.to( other, value=value, equivalencies=equivalencies)
[docs] def decompose(self): """ Return a unit object composed of only irreducible units. Parameters ---------- None Returns ------- unit : CompositeUnit object New object containing only irreducible unit objects. """ return self
@property
[docs] def physical_type(self): """ Return the physical type on the unit. Examples -------- >>> u.m.physical_type 'length' """ from . import physical return physical.get_physical_type(self)
class EquivalentUnitsList(list): """ A class to handle pretty-printing the result of `find_equivalent_units`. """ def __repr__(self): if len(self) == 0: return "[]" else: lines = [] for u in self: irred = u.decompose().to_string() if irred == u.name: irred = "irreducible" lines.append((u.name, irred, ', '.join(u.aliases))) lines.sort() lines.insert(0, ('Primary name', 'Unit definition', 'Aliases')) widths = [0, 0, 0] for line in lines: for i, col in enumerate(line): widths[i] = max(widths[i], len(col)) f = " {{0:<{0}s}} | {{1:<{1}s}} | {{2:<{2}s}}".format(*widths) lines = [f.format(*line) for line in lines] lines = (lines[0:1] + ['['] + ['{0} ,'.format(x) for x in lines[1:]] + [']']) return '\n'.join(lines)
[docs] def find_equivalent_units(self, equivalencies=[]): """ Return a list of all the units that are the same type as the specified unit. Parameters ---------- u : Unit instance or string The `Unit` to find similar units to. equivalencies : list of equivalence pairs, optional A list of equivalence pairs to also list. See :ref:`unit_equivalencies`. Returns ------- units : list of `UnitBase` A list of unit objects that match `u`. A subclass of `list` (`EquivalentUnitsList`) is returned that pretty-prints the list of units when output. """ units = [self] for equiv in equivalencies: funit, tunit = equiv[:2] if self.is_equivalent(funit): units.append(tunit) elif self.is_equivalent(tunit): units.append(funit) equivalencies = set() for tunit in UnitBase._registry: if not isinstance(tunit, PrefixUnit): for u in units: try: tunit.get_converter(u) except UnitsException: pass else: equivalencies.add(tunit) return self.EquivalentUnitsList(equivalencies)
[docs]class NamedUnit(UnitBase): """ The base class of units that have a name. Parameters ---------- st : str or list of str The name of the unit. If a list, the first element is the canonical (short) name, and the rest of the elements are aliases. register : boolean, optional When `True`, also register the unit in the standard unit namespace. Default is `False`. doc : str, optional A docstring describing the unit. format : dict, optional A mapping to format-specific representations of this unit. For example, for the ``Ohm`` unit, it might be nice to have it displayed as ``\\Omega`` by the ``latex`` formatter. In that case, `format` argument should be set to:: {'latex': r'\\Omega'} Raises ------ ValueError If any of the given unit names are already in the registry. ValueError If any of the given unit names are not valid Python tokens. """ def __init__(self, st, register=False, doc=None, format=None): UnitBase.__init__(self) if isinstance(st, (bytes, unicode)): self._names = [st] else: if len(st) == 0: raise ValueError( "st list must have at least one entry") self._names = st[:] if format is None: format = {} self._format = format if doc is None: doc = self._generate_doc() doc = textwrap.dedent(doc) doc = textwrap.fill(doc) self.__doc__ = doc self._register_unit(register) def _generate_doc(self): """ Generate a docstring for the unit if the user didn't supply one. This is only used from the constructor and may be overridden in subclasses. """ names = self.names if len(self.names) > 1: return "{1} ({0})".format(*names[:2]) else: return names[0]
[docs] def get_format_name(self, format): """ Get a name for this unit that is specific to a particular format. Uses the dictionary passed into the `format` kwarg in the constructor. Parameters ---------- format : str The name of the format Returns ------- name : str The name of the unit for the given format. """ return self._format.get(format, self.name)
@property
[docs] def names(self): """ Returns all of the names associated with this unit. """ return self._names
@property
[docs] def name(self): """ Returns the canonical (short) name associated with this unit. """ return self._names[0]
@property
[docs] def aliases(self): """ Returns the alias (long) names for this unit. """ return self._names[1:]
def _register_unit(self, register): """ Registers the unit in the registry, and optionally in another namespace. It is registered under all of the names and aliases given to the constructor. The namespace used is set with `UnitBase._set_namespace`. Parameters ---------- register : bool When `True`, register the unit in the external namespace as well as the central registry. """ if not self._names: raise UnitsException("unit has no string representation") for st in self._names: if not re.match("^[A-Za-z_]+$", st): # will cause problems for simple string parser in # unit() factory raise ValueError( "Invalid unit name {0!r}".format(st)) if register: if st in self._namespace: raise ValueError( "Object with name {0!r} already exists " "in namespace".format(st)) self._namespace[st] = self self._registry.append(self)
[docs]class IrreducibleUnit(NamedUnit): """ Irreducible units are the units that all other units are defined in terms of. Examples are meters, seconds, kilograms, amperes, etc. There is only once instance of such a unit per type. """
[docs] def decompose(self): return CompositeUnit(1, [self], [1])
decompose.__doc__ = UnitBase.decompose.__doc__
[docs]class UnrecognizedUnit(IrreducibleUnit): """ A unit that did not parse correctly. This allows for roundtripping it as a string, but no unit operations actually work on it. Parameters ---------- st : str The name of the unit. """ def __init__(self, st): IrreducibleUnit.__init__(self, st) def __repr__(self): return "UnrecognizedUnit({0})".format(str(self)) def __str__(self): return self.name
[docs] def to_string(self, format='generic'): return self.name
def _register_unit(self, register): pass def _unrecognized_operator(self, *args, **kwargs): raise ValueError( "The unit {0!r} is unrecognized, so all arithmetic operations " "with it are invalid.".format(self.name)) __pow__ = __div__ = __rdiv__ = __truediv__ = __rtruediv__ = __mul__ = \ __rmul__ = __lt__ = __gt__ = __le__ = __ge__ = __neg__ = \ _unrecognized_operator def __eq__(self, other): other = Unit(other, parse_strict='silent') return isinstance(other, UnrecognizedUnit) and self.name == other.name def __ne__(self, other): return not (self == other)
[docs] def is_equivalent(self, other, equivalencies=[]): return self == other
[docs] def get_converter(self, other, equivalencies=[]): raise ValueError( "The unit {0!r} is unrecognized. It can not be converted " "to other units.".format(self.name))
[docs] def get_format_name(self, format): return self.name
class _UnitMetaClass(type): """ This metaclass exists because the Unit constructor should sometimes return instances that already exist. This "overrides" the constructor before the new instance is actually created, so we can return an existing one. """ def __call__(self, s, represents=None, format=None, register=False, doc=None, parse_strict='raise'): from .quantity import Quantity if isinstance(represents, Quantity): if represents.value == 1: represents = represents.unit elif isinstance(represents.unit, CompositeUnit): represents = CompositeUnit(represents.value, bases=represents.unit.bases, powers=represents.unit.powers) else: represents = CompositeUnit(represents.value, bases=[represents.unit], powers=[1]) if isinstance(s, Quantity): if s.value == 1: s = s.unit elif isinstance(s.unit, CompositeUnit): s = CompositeUnit(s.value*s.unit.scale, bases=s.unit.bases, powers=s.unit.powers) else: s = CompositeUnit(s.value, bases=[s.unit], powers=[1]) if isinstance(represents, UnitBase): # This has the effect of calling the real __new__ and # __init__ on the Unit class. return super(_UnitMetaClass, self).__call__( s, represents, format=format, register=register, doc=doc) raise TypeError("Can not convert {0!r} to a unit".format(s)) elif isinstance(s, UnitBase): return s elif isinstance(s, (bytes, unicode)): if len(s.strip()) == 0: # Return the NULL unit return CompositeUnit(1.0, [], []) if format is None: format = 'generic' f = unit_format.get_format(format) try: return f.parse(s) except ValueError as e: if parse_strict == 'raise': raise elif parse_strict == 'warn': warnings.warn( "'{0}' did not parse using format '{1}'. {2}".format( s, format, str(e)), UnitsWarning) elif parse_strict != 'silent': raise ValueError( "'parse_strict' must be 'warn', 'raise' or 'silent'") return UnrecognizedUnit(s) elif isinstance(s, (int, float, np.floating, np.integer)): return CompositeUnit(s, [], []) elif s is None: raise ValueError("None is not a valid Unit") else: raise TypeError("{0} can not be converted to a Unit".format(s))
[docs]class Unit(NamedUnit): """ The main unit class. There are a number of different ways to construct a Unit, but always returns a `UnitBase` instance. If the arguments refer to an already-existing unit, that existing unit instance is returned, rather than a new one. - From a string:: Unit(s, format=None, parse_strict='silent') Construct from a string representing a (possibly compound) unit. The optional `format` keyword argument specifies the format the string is in, by default ``"generic"``. For a description of the available formats, see `astropy.units.format`. The optional `parse_strict` keyword controls what happens when an unrecognized unit string is passed in. It may be one of the following: - ``'raise'``: (default) raise a ValueError exception. - ``'warn'``: emit a Warning, and return an `UnrecognizedUnit` instance. - ``'silent'``: return an `UnrecognizedUnit` instance. - From a number:: Unit(number) Creates a dimensionless unit. - From a `UnitBase` instance:: Unit(unit) Returns the given unit unchanged. - From `None`:: Unit() Returns the null unit. - The last form, which creates a new `Unit` is described in detail below. Parameters ---------- st : str or list of str The name of the unit. If a list, the first element is the canonical (short) name, and the rest of the elements are aliases. represents : UnitBase instance The unit that this named unit represents. register : boolean, optional When `True`, also register the unit in the standard unit namespace. Default is `False`. doc : str, optional A docstring describing the unit. format : dict, optional A mapping to format-specific representations of this unit. For example, for the ``Ohm`` unit, it might be nice to have it displayed as ``\\Omega`` by the ``latex`` formatter. In that case, `format` argument should be set to:: {'latex': r'\\Omega'} Raises ------ ValueError If any of the given unit names are already in the registry. ValueError If any of the given unit names are not valid Python tokens. """ __metaclass__ = _UnitMetaClass def __init__(self, st, represents=None, register=False, doc=None, format=None): represents = Unit(represents) self._represents = represents NamedUnit.__init__(self, st, register=register, doc=doc, format=format)
[docs] def decompose(self): return self._represents.decompose()
decompose.__doc__ = UnitBase.decompose.__doc__
[docs]class PrefixUnit(Unit): """ A unit that is simply a SI-prefixed version of another unit. For example, `mm` is a `PrefixUnit` of ``.001 * m``. The constructor is the same as for `Unit`. """ pass
[docs]class CompositeUnit(UnitBase): """ Create a composite unit using expressions of previously defined units. Direct use of this class is not recommended. Instead use the factory function `Unit(...)` and arithmetic operators to compose units. Parameters ---------- scale : number A scaling factor for the unit. bases : sequence of `UnitBase` A sequence of units this unit is composed of. powers : sequence of numbers A sequence of powers (in parallel with `bases`) for each of the base units. """ def __init__(self, scale, bases, powers): if scale == 1.: scale = 1 self._scale = scale for base in bases: if not isinstance(base, UnitBase): raise TypeError("bases must be sequence of UnitBase instances") self._bases = bases self._powers = powers def __repr__(self): if len(self._bases): return super(CompositeUnit, self).__repr__() else: return 'Unit(dimensionless)' @property
[docs] def scale(self): """ Return the scale of the composite unit. """ return self._scale
@property
[docs] def bases(self): """ Return the bases of the composite unit. """ return self._bases
@property
[docs] def powers(self): """ Return the powers of the composite unit. """ return self._powers
def _expand_and_gather(self, decompose=False): bases = {} scale = self.scale for i, (b, p) in enumerate(zip(self.bases, self.powers)): if decompose: b = b.decompose() if isinstance(b, CompositeUnit): scale *= b.scale ** p for b_sub, p_sub in zip(b.bases, b.powers): bases[b_sub] = p_sub * p + bases.get(b_sub, 0) else: bases[b] = p + bases.get(b, 0) bases = [(b, p) for (b, p) in bases.items() if p != 0] bases.sort(key=lambda x: x[1], reverse=True) self._bases = [x[0] for x in bases] self._powers = [x[1] for x in bases] self._scale = scale def __copy__(self): """ For compatibility with python copy module. """ return CompositeUnit(self._scale, self._bases[:], self._powers[:])
[docs] def simplify(self): self._expand_and_gather() return self
simplify.__doc__ = UnitBase.simplify.__doc__
[docs] def decompose(self): x = CompositeUnit(self.scale, self.bases, self.powers) x._expand_and_gather(True) return x
decompose.__doc__ = UnitBase.decompose.__doc__
[docs] def is_dimensionless(self): x = self.decompose() return (len(x.powers) == 0)
is_dimensionless.__doc__ = UnitBase.is_dimensionless.__doc__
[docs] def dimensionless_constant(self): """ If this unit is dimensionless, return its scalar quantity. Direct use of this method is not recommended. It is generally better to use the `to` or `get_converter` methods instead. """ x = self.decompose() c = x.scale if len(x.bases): raise UnitsException( "'{0}' is not dimensionless".format(self.to_string())) return c
si_prefixes = [ (['Y'], ['yotta'], 1e24), (['Z'], ['zetta'], 1e21), (['E'], ['exa'], 1e18), (['P'], ['peta'], 1e15), (['T'], ['tera'], 1e12), (['G'], ['giga'], 1e9), (['M'], ['mega'], 1e6), (['k'], ['kilo'], 1e3), (['h'], ['hecto'], 1e2), (['da'], ['deka', 'deca'], 1e1), (['d'], ['deci'], 1e-1), (['c'], ['centi'], 1e-2), (['m'], ['milli'], 1e-3), (['u'], ['micro'], 1e-6), (['n'], ['nano'], 1e-9), (['p'], ['pico'], 1e-12), (['f'], ['femto'], 1e-15), (['a'], ['atto'], 1e-18), (['z'], ['zepto'], 1e-21), (['y'], ['yocto'], 1e-24) ] def _add_prefixes(u, excludes=[], register=False): """ Set up all of the standard metric prefixes for a unit. This function should not be used directly, but instead use the `prefixes` kwarg on `def_unit`. Parameters ---------- excludes : list of str, optional Any prefixes to exclude from creation to avoid namespace collisions. register : bool, optional When `True`, also register the unit in the standard unit namespace. Default is `False`. """ for short, long, factor in si_prefixes: exclude = False for prefix in short: if prefix in excludes: exclude = True if exclude: continue names = [] format = {} for prefix in short: for alias in [u.name] + [x for x in u.aliases if len(x) <= 2]: names.append(prefix + alias) # This is a hack to use Greek mu as a prefix # for some formatters. if prefix == 'u': format['latex'] = r'\mu ' + u.get_format_name('latex') format['unicode'] = 'μ' + u.get_format_name('unicode') for key, val in u._format.items(): format.setdefault(key, prefix + val) for prefix in long: for alias in u.aliases: if len(alias) > 2: names.append(prefix + alias) PrefixUnit(names, CompositeUnit(factor, [u], [1]), register=register, format=format)
[docs]def def_unit(s, represents=None, register=None, doc=None, format=None, prefixes=False, exclude_prefixes=[]): """ Factory function for defining new units. Parameters ---------- names : str or list of str The name of the unit. If a list, the first element is the canonical (short) name, and the rest of the elements are aliases. represents : UnitBase instance, optional The unit that this named unit represents. If not provided, a new `IrreducibleUnit` is created. register : boolean, optional When `True`, also register the unit in the standard unit namespace. Default is `False`. doc : str, optional A docstring describing the unit. format : dict, optional A mapping to format-specific representations of this unit. For example, for the ``Ohm`` unit, it might be nice to have it displayed as ``\\Omega`` by the ``latex`` formatter. In that case, `format` argument should be set to:: {'latex': r'\\Omega'} prefixes : bool, optional When `True`, generate all of the SI prefixed versions of the unit as well. For example, for a given unit `m`, will generate `mm`, `cm`, `km`, etc. Default is `False`. This function always returns the base unit object, even if multiple scaled versions of the unit were created. exclude_prefixes : list of str, optional If any of the SI prefixes need to be excluded, they may be listed here. For example, `Pa` can be interpreted either as "petaannum" or "Pascal". Therefore, when defining the prefixes for `a`, `exclude_prefixes` should be set to ``["P"]``. Returns ------- unit : `UnitBase` object The newly-defined unit, or a matching unit that was already defined. """ if register is None: register = False if represents is not None: result = Unit(s, represents, register=register, doc=doc, format=format) else: result = IrreducibleUnit(s, register=register, doc=doc, format=format) if prefixes: _add_prefixes(result, excludes=exclude_prefixes, register=register) return result
def _condition_arg(value): """ Validate value is acceptable for conversion purposes. Will convert into an array if not a scalar, and can be converted into an array Parameters ---------- value: int or float value, or sequence of such values that can be converted into an array if not scalar Returns ------- Scalar value or numpy array Raises ------ ValueError If value is not as expected """ if isinstance(value, float) or isinstance(value, int): return value else: try: avalue = np.array(value) dt = str(avalue.dtype) if not (dt.startswith('int') or dt.startswith('float')): raise ValueError("Must be convertable to int or float array") if ma.isMaskedArray(value): return value return avalue except ValueError: raise ValueError( "Value not scalar compatible or convertable into a float or " "integer array")

Page Contents